Acoustic Events Modeling Language
(for Immersive Communication Network)

M. Tohyama
Dec. 4, 5. 2003

Acoustic Events Modeling: Wave Theoretic Approach

- Source Waveform Signature Analysis and Modeling
 - Speech Waveform Analysis according to the Envelope
 - Talker Information Extraction
 - Signature Analysis for Vocal Fold Motion
- Transmission Path Information Rendering
 - Reverberation Rendering based on the Transfer Function Statistics
 - Representation for HRTF for Moving Source Rendering
- Signal Perception Modeling
 - Precedence Effects and Signal Envelopes
What is an Acoustic Event?

Acoustical phenomena we can listen to and perceive as a distinct sensation.

Acoustic Events Modeling Language

Library or DB
Event Parts Function

Acoustic Events Script

AEML Processor

Acoustic Events
Example of Acoustic Events Script

s1=sound(test.wav)
ld=listener(dummy01)
sp=point(-1,0,0)
db=point(0,0,1)
lp=point(0,0,0)
ld:locate(lp)
s1:goround(0,12,0.5,lp,1,db,sp,0.5,off)
play(ld)

Interactive Sound Field Network
Source Waveform Signature Analysis using Signal Envelopes

- Talker Information Extraction using Signal Envelopes
 - Envelope Correlation Matrices for Higher Frequency Bands over 2kHz
- CLSM: Clustered Line-Spectrum Modeling for Envelope Analysis
 - Peak-picking and Least Square Solution in the Frequency Domain
 - Magnitude and Phase Information for Envelope Reconstruction
- Speech Source Waveform Analysis
 - CQ: Closed Quotient Analysis for Vocal Fold Motion
 - Higher Formant Analysis for Closed and Open Phase

Envelope Requires Frequency-Band Information

![Graph showing envelopes and binary noise](image-url)
Example of narrow-band envelope

“Konojiwa tohkukara mienikui”

Correlation Matrices over 2kHz

Subject 1

Male

Female

Subject 20

Female
Signal Representation by Spectrum Peak-picking

Target Signal

Residual Signal

Power Spectrum

Residual Signal

Clustered Line Spectrum Modeling (CLSM)

An example of clustered two-components
Quatieri (1990), Maher (1990)

\[x_{\nu}(n) \equiv \sum_{k=1}^{K} A_k e^{j2\pi f_k n} + \epsilon_k \]

\[
\begin{bmatrix}
X_0(k_0) \\
X_0(k_1) \\
\vdots \\
X_0(k_{L-1})
\end{bmatrix}
=
\begin{bmatrix}
W(k_0 - k_1) & W(k_0 - k_{y+1}) & \cdots & W(k_0 - k_{y+K-1}) \\
W(k_1 - k_1) & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
W(k_{L-1} - k_1) & \cdots & W(k_{L-1} - k_{y+K-1})
\end{bmatrix}
\begin{bmatrix}
\hat{X}_1(k_1) \\
\hat{X}_1(k_{y+1}) \\
\vdots \\
\hat{X}_1(k_{y+K-1})
\end{bmatrix}
\]

L Observations \quad Window function \quad L > K

K Assumed \quad Sinusoidal \quad components

Linear equations in the frequency domain

An example of CLSM, (a) original waveform by 5 sinusoidal components, (b) power spectrum, (c) residual after subtracting the peak spectrum component, (d) reconstructed waveform by 3 components based on CLSM (e) residual errors by (a)-(d)
CLSM analysis using 3 sinusoidal components every 0.2 ms of frames, Speech [ah], (a) original waveform, (b)(c) (d) lower, middle, and higher components, (e) reconstructed waveform by CLSM, (f) residual components (a)-(e)

CQ estimation for the Speech [ah], (a) original waveform, (b) lower component corresponding, (c) energy decay curve of plot (b), (d) time-aligned simultaneously recorded Lx waveform, (e) differential of the Lx
Power spectrum with an exponential window for closed and open phase, solid line: closed-phase spectrum, broken line: open-phase spectrum, A: speech [ah], B: sung [ah]

Power spectrum for A: speech [ee], B: [ee]
Transmission Path Information Rendering

- Reverberation Rendering based on the Transfer Function Statistics
- Distribution of Poles and Zeros and Transfer Function Statistics
- Room Acoustics Chaos and Sound Ray Propagation
- DFT Equation for Extrapolation of Reverberation Responses

- Representation of HRTF for Moving Source Rendering
 - Convolution for Time Invariant Systems
 - Interpolation of HRTF for Moving Source rendering

Distribution of Poles Modal Spacing Statistics

- $p(x) = 4xe^{-2x}$
- $p(x) = e^{-x}$

(a) Irregular room
(b) Rectangular room
Rendering Process

- Wigner Distribution
- Modal Frequency Generation
- Random Variables
- Superposition of Modal Oscillation
- Freq. characteristics
- Direct Sound and Early Reflections
- Angular Distribution
- Binaural Reverberation Rendering

Reverberation Example

Dog: 🐶 → 🐶
Signal Perception Modeling

- Precedence Effects and Signal Envelopes
 - Precedence Effect on Speech Signal
 - Speech Signal Representation using Envelopes and Carriers
 - Envelope vs Carrier Delays
- Selective Listening
 - Dereverberation and Phase Equalization
 - Blind Source Separation

Procedure

The precedence effect speech signal
- Characteristics of speech signal → Envelope and carrier

1/4-octave band analysis
25 frequency-band signals

Speech $x(n)$

Hilbert envelope $x_{\mu}(n)$

Sinusoidal carrier by MSSC $x_{\nu}(n)$
Signal carrier

MSSC: most significant sinusoidal carrier $x_{ic}(n)$
- MSSC is a signal with the greatest magnitude in the frequency band
- The spectrum was estimated frame by frame

Amplitude modulation $\hat{x}_i = x_{ic}(n) \times x_{ic}(n)$

Full-band signal $\hat{x}(n)$

Experimental setup

- Subjects indicate the direction of sound image by choosing corresponding numbers from 0 to 8

Anechoic room

Subject

Loudspeaker

Lead

R Lag
The results for “original” and “E+C” are almost same.
Envelopse vs Carrier

- Envelope delay → Sound-image separation
- Carrier delay → Sound-image localization and separation
- Low-frequency range → Carrier is a significant cue
- High-frequency range → Envelope is a significant cue
- Sound localization is dominated by low-frequency components of the signals

BSS for 2S2M

\[
\begin{pmatrix}
\hat{s}_1 \\
\hat{s}_2
\end{pmatrix} =
\begin{pmatrix}
1 & c_{12} \\
c_{21} & 1
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix} =
\begin{pmatrix}
u_1 + c_{12}u_2 \\
u_2 + c_{21}u_1
\end{pmatrix}
\]

unknown: \(s_1, s_2, l_1, l_2, l_3 \)

estimate: \(c_{12}, c_{21} \)
Separation Matrix

\[\hat{s}_1 \cdot \hat{s}_2 = (u_1 + c_{12} u_2) \cdot (u_2 + c_{21} u_1) = 0 \]

\[c_{12} |u_2|^2 + c_{21} |u_1|^2 + (1 + c_{12} c_{21}) u_1 \cdot u_2 = 0 \]

\[
\begin{cases}
 u_1^n \cdot u_2^n (c_{12} c_{21} + 1) + |u_1^n|^2 c_{21} + |u_2^n|^2 c_{12} = 0 \\
 u_1^{n-1} \cdot u_2^{n-1} (c_{12} c_{21} + 1) + |u_1^{n-1}|^2 c_{21} + |u_2^{n-1}|^2 c_{12} = 0
\end{cases}
\]

Two unknown parameters: \(c_{12} \) and \(c_{21} \)

Anechoic-room Experiment
Examples

Summary
Acoustic Events Modeling

- Signal Theoretic Approach
 - Signal Representation
 - Linear Equation
- Wave Theoretic Approach
 - Statistical TF Approach
- Perceptual Approach
 - Signal Signature Analysis
 - Binaural Modeling
Next Step: Authentic Approach

‡ COE Wave Communication Group
— Speech Production Process Modeling
— Spatial Sound Field Synthesizer
— Acoustic Systems and Devices